Lithium nitride for reversible hydrogen storage
نویسندگان
چکیده
منابع مشابه
A first-principles study of lithium-decorated hybrid boron nitride and graphene domains for hydrogen storage.
First-principles calculations are performed to investigate the adsorption of hydrogen onto Li-decorated hybrid boron nitride and graphene domains of (BN)(x)C(1-x) complexes with x = 1, 0.25, 0.5, 0.75, 0, and B0.125C0.875. The most stable adsorption sites for the nth hydrogen molecule in the lithium-decorated (BN)(x)C(1-x) complexes are systematically discussed. The most stable adsorption sites...
متن کاملOxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.
Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capaciti...
متن کاملMechanochemistry of lithium nitride under hydrogen gas.
Hydrogen uptake during the mechanochemistry of lithium nitride under 9 MPa hydrogen pressure has been analyzed by means of in situ solid-gas absorption and ex situ X-ray diffraction (XRD) measurements. In situ hydrogenation curves show two H-sorption steps leading to an overall hydrogen uptake of 9.8 wt% H after 3 hours of milling. The milled end-products consist of nanocrystalline (∼10 nm) LiN...
متن کاملModified Borohydrides for Reversible Hydrogen Storage (2)
This paper reports the results in the effort to destabilize lithium borohydride for reversible hydrogen storage. A number of metals, metal hydrides, metal chlorides and complex hydrides were selected and evaluated as the destabilization agents for reducing dehydriding temperature and generating dehydriding-rehydriding reversibility. It is found that some additives are effective. The Raman spect...
متن کاملDestabilized LiBH4/MgH2 for reversible hydrogen storage
DOE and FreedomCAR technical targets of 6.0 and 9.0 wt.% are set forth capacities to realize a “holy grail” for hydrogen storage systems for 2010 and 2015 respectively. Alkali metal complex hydrides with high theoretical hydrogen capacity, for example: LiBH4 (18 wt.%), are being investigated for their properties to store large quantities of hydrogen. The catalytic doping of SiO2, seems to enhan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Alloys and Compounds
سال: 2004
ISSN: 0925-8388
DOI: 10.1016/s0925-8388(03)00637-6